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Abstract— Recently, Aluminum nanoparticles become more and more interesting due to their possible applications in explosive materials.  
The current study aims to investigate, qualitatively, the oxidation of aluminum nanoparticles with passivating oxide coating. The stability of 
the oxide coating in nanoaluminum was evaluated by hot-stage transmission electron microscopy (TEM). In addition, single particle mass 
spectrometer (SPMS) was used to assess the oxidation process. The results show that the oxidation of oxide-coated nanoaluminum not 
only happens, simultaneously, with melting of the aluminum core, but also it is most probably that it begins with that event and resulted 
mechanical rupture of the oxide coating. 

Index Terms— Mechanism, Phase change, Aluminium, Nanoparticles, Oxidation, Nanoaluminium, Oxide coating, Hot-stage transmission 
electron microscopy (TEM), Particle mass spectrometer (SPMS) 

——————————      —————————— 

1 INTRODUCTION                                                                     
he energetic materials are defined as the materials with 
high capacity of chemical energy storage and high rate of 
energy release [1-8]. These materials are of numerous ap-

plications in explosives, propellants and, pyrotechnics [9, 10]. 
For example, micro-aluminum, with a high enthalpy of com-
bustion, is usually used in rocket propellant formulations [11-
25]. There are various studies in the literature about the com-
bustion mechanism of micro-aluminum particles [26-31]. It 
was implied by some studies [32, 33] that the ignition temper-
ature of aluminum oxide is coinciding with its melting point 
[34-39]. However, with application of embedded thermocou-
ples, other researchers [40] were found that aluminum is ignit-
ed at temperature of 2000-2100 K [41]. Moreover, there are 
some studies about the temperature of fracture in oxide shell 
which report this temperature, and hence, ignition, could be as 
low as 1300 K [42]. 
     The above mentioned studies are all about micro-particles 
[43]. However, fine grained aluminum (nanoaluminum) is 
recently more interested as the grained metals are well-known 
for their highly reactivity [44-56]. As there will be a direct rela-
tionship between the transfer of oxidizer to the particle and 
the rate of energy release, it may be concluded that smaller 
particles will accelerate the overall energy release [57, 58]. 
     Consecutively, this question is raised that what is the dif-
ference between burning properties of nanoaluminum and 
micro-aluminum particles [59]. The applicability of aluminum 
nanoparticles in increasing of the burning rate of propellants 
by 5-10 times compared to usual aluminum particles is recent-
ly shown by [60]. Furthermore, it was reported that the igni-
tion temperature of aluminum nanoparticles formed by elec-
trical wire explosion may be low to 820 K, as measured by 
thermogravimetry (TGA) and differential thermal analysis 
(DTA) [61]. It should be noted that conventional dynamic 
thermal techniques such as TGA which need to a bulk sample 

are used in most of recent measurements [62]. Subsequently, it 
also should be noted that the response dependency of these 
methods to heat and mass transfer effects, which are sorely 
explainable, is well-known [63-73]. Ideally, a basic analysis of 
aluminum nanoparticle oxidation is performed on a single 
particle without any consideration of heat and mass transfer 
effects between the considered particle and its surrounding 
particles which interacts with this [74, 75]. 
     The current study aims to investigate, qualitatively, the 
basic reactivity of aluminum nanoparticles and to show the 
importance of aluminum phase change in the oxidation pro-
cess and the role and stability of the oxide coating. Oxide has 
an important role since it can be a passivating layer for bare 
and fine metal particles which can be pyrophoric [76-84]. In 
the current study, the results of using the hot-stage transmis-
sion electron microscopy (HSTEM) and single particle mass 
spectrometer (SPMS) [85] for characterization of the nanoalu-
minum oxidation were reported. 

2 EXPERIMENTAL METHODS 
Commercially available aluminum nanoparticles (Aveka, 
corp.) that dispersed in methanol were used in this study. The 
results of TEM analysis was shown that the particles were ag-
gregates of around 170 nm, and mainly composed of particles 
between 40-60 nm, with a passivating oxide coating lower than 
15 nm. 
     The marked silicon oxide coated nickel grids were used in 
the microscopy experiments. The methanol dispersion was 
ultrasonicated before the deposition of the mixture to the grid. 
The heating and continuous monitoring of particles on a hot-
stage TEM (Philips CM30) to a temperature of 1195 K, under 
vacuum, was performed and to clear the role of thermal 
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stresses on the particles. In the next part of the experimental 
study, a center marker was used to locate several particles on 
the grid. Then, the grid was removed from the microscope and 
heated in a tube furnace in the presence of air at various tem-
peratures. Finally, the grid was returned to the microscope and 
the same particles were located using the marker to detect the 
morphological changes. 
     Another experiment also was performed in which a newly 
developed single particle mass-spectrometer (SPMS) [85] with 
the ability of quantitative determination of the relative ele-
mental composition of individual nanoparticles was used to 
measure the temperature of oxidation initiating in heated air. 
Dry compressed air was used in these experiments for aeroso-
lizing of the aluminum nanoparticle/methanol dispersion. The 
removal of methanol from the aerosol stream was performed 
by passing the stream through several diffusion dryers. Ulti-
mately, the stream was heated to different temperatures, and 
SPMS system was used, based on a procedure described in 
[85], to analyze the particles in the stream. 

3 RESULTS AND DISCUSSIONS 
The oxide shell, as estimated to be about 15 nm, in intact but it 
is clearly cracked and open with an obvious meniscus which it 
can be ascribed to the withdrawing liquid aluminum interface 
as it flows out of the particles. Based on the bulk properties as 
a rough estimate, it should be noted that the density of liquid 
aluminum (9.6 g/cm3) is less than that of solid aluminum (9.9 
g/cm3), since aluminum expands by 18% as it melts. By ne-
glecting the thermal expansion of the oxide shell, which is rea-
sonable at these temperatures relative to the expected changes 
for aluminum, the oxide shell will be under tension and the 
aluminum core under compression. Assuming that the bulk 
modulus of aluminum (88 Gpa) is useable at these length 
scales, a 93000 atm rise in internal pressure will be present at 
the oxide shell because of the density difference. The presence 
of a large internal pressure on the aluminum core and tension 
on the oxide shell at these high temperatures is demonstrated, 
recently, by a molecular dynamic calculation [83]. These mean 
that the oxide shell is dynamically unstable upon melting of 
the aluminum core. In addition, the results are shown that the 
increase in pressure in smaller particles is higher than that in 
larger particles, demonstrating that smaller particles are of 
higher tendency to rupture. Furthermore, the oxide coating in 
smaller particles is under higher tension than large particles 
due to its higher curvature which in turn leads to more easy 
rupture in smaller particles. 
      In all cases, particles were heated in air for 20 minutes. It is 
seeable that the before and after images at 914 K are basically 
identical, while particles heated to a temperature of 1212 K, 
above the melting point (952 K) of aluminum, clearly show 
considerable restructuring and rupture/loss of apparent oxide 
layer structure. Although these results are consistent with the 
hot-stage TEM measurements, they still deal only with the 
issue of physical restructuring and melting of aluminum and 
do not address the issue of any chemical change, i.e., oxida-
tion. 

     The single particle mass spectrometer (SPMS) was used to 
investigate the oxidation as opposed to melting and to track 
the oxygen content of particles under exposure to air at differ-
ent temperatures. In these experiments, aluminum aerosol 
resides about one second in the heated section of the flow re-
actor. 
     It can be seen that the oxygen has not appeared in the spec-
tra until a temperature of 992 K, which is slightly above the 
melting point of aluminum, while at 108 K lower, any oxida-
tion is not observed. With increasing temperature the oxygen 
signal intensifies, implying greater extent of oxidation. A sen-
sitivity of about 1.5% (mole percentage) observed in the parti-
cle in previous work with the SPMS for mixed composition or 
coated particles. With 13-14 nm oxide thickness, the SPMS 
should detect the oxide if it exists. But in these experiments, 
where aluminum dispersed in methanol was used unlike the 
particles used in microscopy experiments, there is not an ini-
tial oxide coating since they were never exposed to ambient 
atmosphere. In our experimental conditions, the air was mixed 
with aluminum particles just before the furnace and the ex-
posed time for aluminum particles to the air was relatively 
short (1.5 s). Clearly, such a time is too short and hence, the 
reactivity of nanoaluminum is sufficiently slow as to prevent 
the formation of a detectable oxide coating. At a temperature 
of 992 K, the oxygen is appeared in the particle, as consistent 
with the above mentioned microscopy studies. The current 
work is aimed to quantifying the kinetics of oxidation using 
this experimental approach. 
     Based on the results of these two different experiments, it is 
understand that there is a mechanism whereby the mechanical 
stability of the oxide shell determines the onset of combustion. 
With increasing of the temperature beyond the melting point, 
the density difference between aluminum solid and liquid 
causes a rupture in the oxide shell. This, in turn, results in ex-
posure of aluminum to the oxidizer and following ignition. 
     Previously, research groups [84] were reported that the ox-
idation of nanoaluminum is happened at temperatures of 
around 800 K, which is below the melting point of aluminum. 
This is significantly different from observations of the current 
study. These researchers used dynamic thermal techniques 
such as thermogravimetry. Although these techniques are 
widely used to measure condensed phase reactions, limita-
tions of these techniques are well-known due to uncertainties 
related to heat and mass transfer [83-85]. The use of both these 
methods, SPMS and TGA, in kinetic measurements of solid-
state reactions resulted that, for example, the onset tempera-
ture of thermal decomposition reactions of metal nitrates var-
ied with the variation of mass loading in the case of TGA [83-
85]. It was reported that the onset temperature was consistent-
ly lower with TGA, and that small samples tended to increase 
the onset temperature [83-85]. The difference is that the con-
ventional methods use sample sizes of the order of a milli-
gram, while the SPMS measurement characterizes a single 
nanoparticle, of the order of a femtogram. It has been shown 
that increase in sample size led to decrease in activation ener-
gy of a reaction whivh this in turn led to measuring a lower 
onset temperature than that measured by conventional meth-
ods. It may be due to the fact that higher sample size would 
result in heat release which raises the temperature of the sam-
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ple above the measured pan temperature, and therefore an 
observation of an apparent higher reactivity. The authors be-
lieved that a sample size of approximately 1.5 fg will be miti-
gates some of these issues and makes a more direct and clear 
observation of the onset condition to oxidation. 

4 CONCLUSION 
The current study aims to evaluate the role of the mechanical 
stability of the oxide shell over an aluminum nanoparticle and 
its role in passivating the particle toward oxidation. The hot-
stage TEM imaging and single particle mass spectrometry 
were used to reveal the morphological and chemical changes, 
respectively. Based on the results of both experimental studies, 
it was concluded that aluminum phase change causes rupture 
of the oxide shell, and may be the primary initiator in the igni-
tion of aluminum nanoparticles. It may be interesting for who 
are deals with new propellant formulations based on metal 
nanoparticles. 
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